3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls
نویسندگان
چکیده
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.
منابع مشابه
Investigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کامل-Implementation of lattice Boltzmann method to study mixing reduction in isothermal electroosmotic pump with hydrophobic walls
The aim of the present work is to analyze the accuracy and to extend the capability of lattice Boltzmann method in slip EOF; a phenomenon which was previously studied by molecular dynamics and less considered by LBM. At the present work, a numerical experiment on boundary conditions of slip velocity is performed and the proportionality of slip with shear stress in electroosmotic pump is proved....
متن کاملHolographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interf...
متن کاملAnalysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls
Sample mixing is difficult in microfluidic devices because of laminar flow. Micromixers are designed to ensure the optimal use of miniaturized devices. The present study aims to design a chaotic-advection-based passive micromixer with enhanced mixing efficiency. A serpentine-shaped microchannel with sinusoidal side walls was designed, and three cases, with amplitude to wavelength (A/λ) ratios o...
متن کاملNumerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کامل